|
In mathematics, overconvergent modular forms are special p-adic modular forms that are elements of certain ''p''-adic Banach spaces (usually infinite dimensional) containing classical spaces of modular forms as subspaces. They were introduced by Nicholas M. Katz in 1972. ==References== * *Robert F. Coleman, ''Classical and overconvergent modular forms.'' Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). J. Théor. Nombres Bordeaux 7 (1995), no. 1, 333--365. *Robert F. Coleman ''Classical and Overconvergent Modular Forms of Higher Level'', J. Theor. Nombres Bordeaux 9 (1997), no. 2, 395-403. *Katz, Nicholas M. ''p-adic properties of modular schemes and modular forms.'' Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 69-190. Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, 1973. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Overconvergent modular form」の詳細全文を読む スポンサード リンク
|